推广 热搜: page  音视频  使用  个数  搜索引擎  选择  企业  父亲  百度  可以 

智能算法|有哪些以动物命名的算法?

   日期:2024-12-18     作者:a8b57    caijiyuan   评论:0    移动:http://ww.kub2b.com/mobile/news/7134.html
核心提示:黄梅时节家家雨,青草池塘处处蛙。有约不来过夜半,闲敲棋子落灯花。以动物命名的算法可远不止这些,俗话说得好,只要脑洞大,就

黄梅时节家家雨,青草池塘处处蛙。
有约不来过夜半,闲敲棋子落灯花。


以动物命名的算法可远不止这些,俗话说得好,只要脑洞大,就能玩出新花样,这句话在启发式算法界绝对名副其实!然鹅什么是启发式算法呢?

启发式算法:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。通俗点讲就是该类算法来源于生活,用这些算法求出来的解可能不是最好的,只能说是相对较好的,但是这个相对程度就不敢保证,只要能符合工程需要就行。

实际上启发式策略又分为启发式和元启发式,启发式策略是一类在求解某个具体问题时,在可以接受的时间和空间内能给出其可行解,但又不保证求得最优解(以及可行解与最优解的偏离)的策略的总称。许多启发式算法是相当特殊的,依赖于某个特定问题。元启发式通常是一个通用的启发式策略,他们通常不借助于某种问题的特有条件,从而能够运用于更广泛的方面。许多元启发式算法都从自然界的一些随机现象取得灵感,如模拟退火、遗传算法、粒子群算法、蜂群算法、狼群算法等。

天牛须搜索(Beetle Antennae Search-BAS),也叫甲壳虫须搜索,是2017年提出的一种高效的智能优化算法。类似于遗传算法、粒子群算法、模拟退火等智能优化算法,天牛须搜索不需要知道函数的具体形式,不需要梯度信息,就可以实现高效寻优。相比于粒子群算法,天牛须搜索只需要一个个体,即一只天牛,运算量大大降低。

在一片水域中,鱼往往能自行或尾随其他鱼找到营养物质多的地方,因而鱼生存数目最多的地方一般就是本水域中营养物质最多的地方,人工鱼群算法就是根据这一特点,通过构造人工鱼来模仿鱼群的觅食、聚群及追尾行为,从而实现寻优。

人工鱼拥有以下几种典型行为:

(1)觅食行为:一般情况下鱼在水中随机地自由游动,当发现食物时,则会向食物逐渐增多的方向快速游去。

(2)聚群行为: 鱼在游动过程中为了保证自身的生存和躲避危害会自然地聚集成群,鱼聚群时所遵守的规则有三条:

分隔规则:尽量避免与临近伙伴过于拥挤;

对准规则:尽量与临近伙伴的平均方向一致;

内聚规则:尽量朝临近伙伴的中心移动。

(3)追尾行为:当鱼群中的一条或几条鱼发现食物时,其临近的伙伴会尾随其快速到达食物点。

GSO算法思想源于模拟自然界中萤火虫在晚上群聚活动的自然现象而提出,在萤火虫的群聚活动中,各只萤火虫通过散发荧光素与同伴进行觅食以及求偶等信息交流。一般来说,荧光素越亮的萤火虫其号召力就越强,最终会出现很多萤火虫聚集在一些荧光素较亮的萤火虫周围。人工萤火虫算法就是根据这种现象提出的一种新型的仿生群智能优化算法。在人工萤火虫群优化算法中,每只萤火虫被视为解空间的一个解,萤火虫种群作为初始解随机的分布在搜索空间中,然后根据自然界萤火虫的移动方式进行解空间中每只萤火虫的移动。通过每一次的移动,最终使得萤火虫聚集到较好的萤火虫周围,也即是找到多个极值点,从而达到种群寻优的目的。

细菌觅食算法是基于细菌觅食行为过程而提出的一种仿生随机搜索算法。该算法模拟细菌群体的行为,包括趋化,繁殖,驱散等三个个步骤。

经过长期的对猴群活动习性的观察发现,猴群在爬山的过程中,总是可以分解为攀爬、观跳、空翻行为。首先,猴子会在较小范围内爬行,不断向更高处前进。猴群的攀爬行为就相当于狼群算法中搜寻猎物的过程,寻找局部地区内的一个最优值。找到更优的值,就替换掉原来的值。猴子爬到所在地的最高处时,就观察附近有没有更高的位置,如果有,就跳跃至更高处,然后继续攀爬行为至顶端,这就是狼群的观跳行为。为了发现全局最高的地方,猴子会空翻至更远的区域,然后继续爬行,就是猴群的空翻行为。重复几次这样的行为,直至到达全局最高点处。

在某些情况下,当布谷鸟寄生其卵时,寄主鸟类会攻击布谷鸟,也有可能发现鸟巢中陌生的卵。这时,寄主鸟类会丢弃布谷鸟所产的卵或直接重新筑巢。与寄主鸟类不停地争斗中,布谷鸟的卵及孵化的幼雏皆沿着仿照寄主鸟类的方式生长。

布谷鸟搜索(cuckoo search, CS)算法属于典型的具有迭代搜寻特征的群智能优化算法。作为新型的启发式搜索算法,是以布谷鸟的寄巢产卵特点及少部分生物的莱维飞行(Levy flights)模式为参照,由Yang等于2009年提出的。其主要思想是通过随机行走方式产生候选鸟巢以及采用贪婪策略更新鸟巢位置,最终使鸟巢位置达到或者接近全局最优解。

蝙蝠算法(Bat Algorithm,BA) 是Yang教授于2010年基于群体智能提出的启发式搜索算法,是一种搜索全局最优解的有效方法。该算法是一种基于迭代的优化技术,初始化为一组随机解,然后通过迭代搜寻最优解,且在最优解周围通过随机飞行产生局部新解,加强了局部搜索。与其他算法相比,BA在准确性和有效性方面远优于其他算法,且没有许多参数要进行调整。

蝙蝠使用回声定位技术检测猎物、避开障碍物以及在黑暗的环境中找到栖息地。其可以发出非常响亮的脉冲并听取从周围物体反弹回来的回声,根据回声到双耳的不同时间与强度判断物体所在的方向和位置;还可以根据目标猎物或者障碍物的特征发出不同性质的脉冲。

BA算法是模拟自然界中蝙蝠利用一种声呐来探测猎物、避免障碍物的随机搜索算法即模拟蝙蝠利用超声波对障碍物或猎物进行最基本的探测、定位能力并将其和优化目标功能相联系。BA算法的仿生原理将种群数量为的蝙蝠个体映射为D维问题空间中的NP个可行解,将优化过程和搜索模拟成种群蝙蝠个体移动过程和搜寻猎物利用求解问题的适应度函数值来衡量蝙蝠所处位置的优劣,将个体的优胜劣汰过程类比为优化和搜索过程中用好的可行解替代较差可行解的迭代过程。在蝙蝠搜索算法中,为了模拟蝙蝠探测猎物、避免障碍物,需假设如下三个近似的或理想化的规则:

1)所有蝙蝠利用回声定位的方法感知距离,并且它们采用一种巧妙的方式来区别猎物和背景障碍物之间的不同。

2)蝙蝠在位置以速度随机飞行,以固定的频率、可变的波长和音量来搜索猎物。蝙蝠根据自身与目标的邻近程度来自动调整发射的脉冲波长(或频率)和调整脉冲发射率属于。

本文地址:http://ww.kub2b.com/news/7134.html     企库往 http://ww.kub2b.com/ ,  查看更多

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。

 
 
更多>同类最新文章
0相关评论

文章列表
相关文章
最新动态
推荐图文
最新文章
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号