推广 热搜: page  音视频  使用  个数  搜索引擎  选择  企业  可以  父亲  百度 

SQL、Pandas和Spark:这个库,实现了三大数据分析工具的大一统

   日期:2025-01-03     作者:czdytfhm4    caijiyuan   评论:0    移动:http://ww.kub2b.com/mobile/news/20062.html
核心提示:导读看过近期推文的读者,想必应该知道笔者最近在开一个数据分析常用工具对比的系列,主要是围绕SQL、Pandas和Spark三大个人常用

导读

看过近期推文的读者,想必应该知道笔者最近在开一个数据分析常用工具对比的系列,主要是围绕SQL、Pandas和Spark三大个人常用数据分析工具,目前已完成了、、、以及等5篇文章。当然,这里的Spark是基于Scala语言版本,所以这3个工具实际分别代表了SQL、Python和Scala三种编程语言,而在不同语言中自然是不便于数据统一和交互的。

最近,偶然的机会居然发现一直忽视了pyspark这个库(虽然早已知悉该库),这个库在某种层面上居然可以实现三个工具的大一统,不禁直呼真香!

01 pyspark简介及环境搭建

pyspark是python中的一个第三方库,相当于Apache Spark组件的python化版本(Spark当前支持Java Scala Python和R 4种编程语言接口),需要依赖py4j库(即python for java的缩略词),而恰恰是这个库实现了将python和java的互联,所以pyspark库虽然体积很大,大约226M,但实际上绝大部分都是spark中的原生jar包,占据了217M,体积占比高达96%。

由于Spark是基于Scala语言实现的大数据组件,而Scala语言又是运行在JVM虚拟机上的,所以Spark自然依赖JDK,截止目前为止JDK8依然可用,而且几乎是安装各大数据组件时的首选。所以搭建pyspark环境首先需要安装JDK8,而后这里介绍两种方式搭建pyspark运行环境:

1)pip install pyspark+任意pythonIDE

pyspark作为python的一个第三方库,自然可以通过pip包管理工具进行安装,所以仅需执行如下命令即可完成自动安装:

为了保证更快的下载速度,可以更改pip源为国内镜像,具体设置方式可参考历史文章:

2)Spark官网下载指定tar包解压

与其他大数据组件不同,Spark实际上提供了windows系统下良好的兼容运行环境,而且方式也非常简单。访问spark官网,选择目标版本(当前最新版本是spark3.1.1版本),点击链接即可跳转到下载页面,不出意外的话会自动推荐国内镜像下载地址,所以下载速度是很有保证的。

下载完毕后即得到了一个tgz格式的文件,移动至适当目录直接解压即可,而后进入bin目录,选择打开pyspark.cmd,即会自动创建一个pyspark的shell运行环境,整个过程非常简单,无需任何设置。

进入pyspark环境,已创建好sc和spark两个入口变量

两种pyspark环境搭建方式对比:

总体来看,两种方式各有利弊,如果是进行正式的开发和数据处理流程,个人倾向于选择进入第一种pyspark环境;而对于简单的功能测试,则会优先使用pyspark.cmd环境。

02 三大数据分析工具灵活切换

在日常工作中,我们常常会使用多种工具来实现不同的数据分析需求,比如个人用的最多的还是SQL、Pandas和Spark3大工具,无非就是喜欢SQL的语法简洁易用、Pandas的API丰富多样以及Spark的分布式大数据处理能力,但同时不幸的是这几个工具也都有各自的弱点,比如SQL仅能用于处理一些简单的需求,复杂的逻辑实现不太可能;Pandas只能单机运行、大数据处理乏力;Spark接口又相对比较有限,且有些算子写法会比较复杂。

懒惰是人类进步的阶梯,这个道理在数据处理工具的选择上也有所体现。

希望能在多种工具间灵活切换、自由组合选用,自然是最朴(偷)素(懒)的想法,所幸pyspark刚好能够满足这一需求!以SQL中的数据表、pandas中的Dataframe和spark中的Dataframe三种数据结构为对象,依赖如下几个接口可实现数据在3种工具间的任意切换:

当然,pandas自然也可以通过pd.read_sql和df.to_sql实现pandas与数据库表的序列化与反序列化,但这里主要是指在内存中的数据结构的任意切换。

举个小例子:

1)spark创建一个Dataframe

2)spark.Dataframe转换为pd.Dataframe

3)pd.Dataframe转换为spark.Dataframe

4)spark.Dataframe注册临时数据表并执行SQL查询语句

本文地址:http://ww.kub2b.com/news/20062.html     企库往 http://ww.kub2b.com/ ,  查看更多

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。

 
 
更多>同类最新文章
0相关评论

文章列表
相关文章
最新动态
推荐图文
最新文章
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号