生活服务
AI人工智能技术是通过怎样的方式实现人脸识别和图片识别的?
2025-01-01 17:08  浏览:96

用通俗的话总的来说,就是利用大数据抽取规律,再利用规律去预测(回归)、分类、聚类未知的输入,得到输出(结果)。

单说图片识别:

这里面的大数据就是已知的输入(图片)和已知的结果(图片的标签),抽取规律也就是相应的算法(卷及神经网络),预测、分类、聚类就是得到图片的结果(图片识别)。

可以分为以下几步:

第一步:数据的预处理。

图片是由一个一个的像素组成的,就拿入门的案例说吧,MNIST数据集,是一个手写数字的数据集,每一张图片都是由28×28个像素点形成的。

就像这样:

总共有60000张这样的图片,而图片的标签(也就是结果)也是已知的(0~9),那么设输入为x输出为y,

计算机是无法读懂图片的,所以我们要将图片转换成计算机所能认识的东东。

矩阵:

x就是一个28×28的矩阵每一个点表示图片中相应位置的灰度。有的神经网络为了更简化的计算,将28×28 的矩阵,转换为一个1×784的向量(一维矩阵)。这里的x是28×28×1,这个1表示的是单通道,也就是只有一种颜色。如果是彩色图片的话,那么就应该是28×28×3,这个3表示的是RGB三个颜色通道。

y就是一个数字,0~9。

有些算法还会降x,y进行归一化,也就是转换为0~1之间的矩阵、数字。

第二步:抽取特征。

卷积(特征提取)的具体计算方法:

其中input为输入,filter叫做卷积核(暂且理解为滤波器),output叫做特征图,特征图的个数和filter的个数是相同的(filter W0、filter W1)。既然是矩阵,那么可以设中间的参数是W,于是就有Wx+b = output。这里的W是我们最终要训练出来的。

计算方法:

w0与x蓝色区域做内积(对应位置相乘后相加):

f1第1层 = 0×1+ 0×1+ 0×1 + 0×-1+ 1×-1+ 1×0 + 0×-1+1×1+1×0 = 0

f1第2层 = 0×-1+0×-1+0×1 +0×-1+0×1+1×0 +0×-1+2×1+2×0 = 2

f1第3层 = 0×1+0×0+0×-1+ 0×0+2×0+2×0+ 0×1+0×-1+0×-1+ = 0

那么根据神经网络得分函数:f(x,w) = wx+b

这里的b =1

那么输出的得分值就为f1+f2+f3+b = 0+2+0+1 =3

最右边绿色的矩阵第1行,第1列,就是3

将卷积核在输入矩阵滑动,

同理可以计算

这里的输出叫做特征图。

这里就可以看出,经过卷积核Filter(滤波器),将图片浓缩了,浓缩之后,再进行一次非线性的处理,用一些非线性的函数将线性结果非线性化(叫做激活函数),这层叫作卷积层。

这里只是一层,大型数据集(输入很多的情况)一层是不够的,需要很多层,输入-卷积-输出-卷积-输出........。

比如VGG-16,就有16个卷积层。

进一步浓缩叫做池化层。

同样有一个filter,将特征图进行MAX(取最大值)或者MEAN(取均值),进一步浓缩特征。

浓缩完特征之后,接着后面的层叫做全连接层。

就是将权重参数W(矩阵),分别乘以池化完成的结果,得到最终的分类结果比如前边所说的0~9的手写字体,要分10个类别,如果池化完成的结果是1×64,那么全连接层就应该是64×10,最终得到1×10的矩阵,就是分类0~9的结果。

以上最重要的就是要求W,也就是最前边说的,根据大数据找规律。

第三步:参数更新

那么还有问题,W是多少谁知道?

没人知道,这里是根据计算机一步一步的试出来的,

先随机的给出一组W,算出结果Y1,利用已知的x当做输入,用已知的y与y1坐差值,那么Y1-y就会有一个差值,就是预测值和真实值的差值。称作损失函数,有些叫做代价函数。当代价函数最小的时候,预测值Y1和真实值y的差距越来越小,当差距在我们可以接受的范围内,那么就可以认为,由权重参数W生成的Y1可以对输入x进行预测和分类。

那么如何让损失函数最小呢?这里并不是求导后求极值点,而是对损失函数求导数,调整W,使得差值沿着导数的方向前进,最终达到极小值点。

这时候得到的W就是我们最终要的结果了。

第四步:利用参数

既然得到了W,我们就可以利用这个W,将一个未知结果的x输入,从而得到通过W计算出的y,这个y就是图片识别的结果。

现在有很多的开源深度学习框架,是各大著名公司封装好的函数(已经造好的轮子),

以下是一个卷积神经网络识别MNIST的小例子(基于google深度学习框架TensorFlow):

只是经过了21次的参数更新,最终的识别准确率在99%以上。

输出结果:

Extracting MNIST_data/train-images-idx3-ubyte.gz

Extracting MNIST_data/train-labels-idx1-ubyte.gz

Extracting MNIST_data/t10k-images-idx3-ubyte.gz

Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

第0次迭代,测试集准确率是0.7688

第1次迭代,测试集准确率是0.7831

第2次迭代,测试集准确率是0.8829

第3次迭代,测试集准确率是0.8883

第4次迭代,测试集准确率是0.889

第5次迭代,测试集准确率是0.8919

第6次迭代,测试集准确率是0.8908

第7次迭代,测试集准确率是0.893

第8次迭代,测试集准确率是0.894

第9次迭代,测试集准确率是0.8949

第10次迭代,测试集准确率是0.8927

第11次迭代,测试集准确率是0.8935

第12次迭代,测试集准确率是0.8948

第13次迭代,测试集准确率是0.9873

第14次迭代,测试集准确率是0.9881

第15次迭代,测试集准确率是0.9864

第16次迭代,测试集准确率是0.9885

第17次迭代,测试集准确率是0.9906

第18次迭代,测试集准确率是0.9876

第19次迭代,测试集准确率是0.9884

    以上就是本篇文章【AI人工智能技术是通过怎样的方式实现人脸识别和图片识别的?】的全部内容了,欢迎阅览 ! 文章地址:http://ww.kub2b.com/tnews/4194.html
     栏目首页      相关文章      动态      同类文章      热门文章      网站地图      返回首页 企库往资讯移动站 http://ww.kub2b.com/mobile/ , 查看更多   
最新文章
腾讯围棋(野狐)手机版最新版中国象棋手机版「腾讯围棋(野狐)手机版最新版」
中国象棋竞技版最新版是有着很多经典的象棋残谱的经典益智游戏,在这里解锁自己感兴趣的棋谱,不管是是和电脑竞技还是真人pk,都
小米手机掉水里了应该怎么处理手机掉水里怎么处理「小米手机掉水里了应该怎么处理」
在日常生活中,我们难免会遇到一些突发情况,比如小米手机不慎掉入水中。面对这种情况,如果处理不当,可能会导致手机严重损坏。
有钱人“买爆”上海豪宅,有楼盘卖出200亿!去年多个“10万+”豪宅“日光”
本文来源:时代财经 作者:陈泽旋图源:图虫创意有钱人仍在楼市发挥他们的“钞能力”。近日,来自上海的中高端改善型项目海玥黄
华为WatchGT3可以遥控拍照吗?华为WatchGT3遥控拍照介绍华为手机驱动「华为WatchGT3可以遥控拍照吗?华为WatchGT3遥控拍照介绍」
近日有些朋友询问能否用华为Watch GT 3远程控制拍摄照片?以下是相关说明。(注:以上为简化版文本)华为WatchGT3支持遥控拍照,
谱写中印尼命运共同体新篇章
王鲁彤 中国和印度尼西亚是隔海相望的好邻居、命运与共的好伙伴,两国友谊源远流长。古代海上丝绸之路曾将双方紧密联系在一起,
东京股市继续上涨
  新华社东京4月18日电(记者钱铮)受医药和生物相关股普遍上涨拉动,日本东京股市18日继续上涨。日经225种股票平均价格指数收
如何有效格式化手机以清理存储空间和提升性能手机格式化是什么意思「如何有效格式化手机以清理存储空间和提升性能」
  在现代社会,手机已经成为我们生活中不可或缺的一部分。随着时间的推移,手机中的数据会逐渐增多,可能会导致设备运行缓慢,
如何快速关闭手机勿扰模式?详细步骤解析!手机勿扰模式在哪里「如何快速关闭手机勿扰模式?详细步骤解析!」
如何在Android手机上关闭勿扰模式 通过快捷设置关闭:用户可从屏幕顶部向下滑动以打开通知面板,接着找到“勿扰模式”图标(通常
microsd卡是什么卡手机sd卡是什么「microsd卡是什么卡」
  microsd卡是什么卡,很多人都有这样的疑问吧?下面就让我来为大家介绍一下吧!microsd卡是什么卡?  其实,MicroSD卡是一种
名茶汇聚的安徽,何以大而不强?
01为何名茶多,但名企少、名牌也少?说起安徽茶叶,大家第一印象是名优茶多,但这并不意味着龙头企业、知名品牌也多。中国十大名