它的基本思想是: 选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分;其中一部分的所有数据都比另外一部分的所有数据都要小。然后,再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
从数列中挑出一个基准值。
将所有比基准值小的摆放在基准前面,所有比基准值大的摆在基准的后面(相同的数可以到任一边);在这个分区退出之后,该基准就处于数列的中间位置。
递归地把"基准值前面的子数列"和"基准值后面的子数列"进行排序。
下面以数列a={30,40,60,10,20,50}为例,演示它的快速排序过程(如下图)。
上图只是给出了第1趟快速排序的流程。在第1趟中,设置x=a[i],即x=30。
从"右 --> 左"查找小于x的数: 找到满足条件的数a[j]=20,此时j=4;然后将a[j]赋值a[i],此时i=0;接着从左往右遍历。
从"左 --> 右"查找大于x的数: 找到满足条件的数a[i]=40,此时i=1;然后将a[i]赋值a[j],此时j=4;接着从右往左遍历。
从"右 --> 左"查找小于x的数: 找到满足条件的数a[j]=10,此时j=3;然后将a[j]赋值a[i],此时i=1;接着从左往右遍历。
从"左 --> 右"查找大于x的数: 找到满足条件的数a[i]=60,此时i=2;然后将a[i]赋值a[j],此时j=3;接着从右往左遍历。
从"右 --> 左"查找小于x的数: 没有找到满足条件的数。当i>=j时,停止查找;然后将x赋值给a[i]。此趟遍历结束!
按照同样的方法,对子数列进行递归遍历。最后得到有序数组!
快速排序稳定性
快速排序是不稳定的算法,它不满足稳定算法的定义。
算法稳定性 -- 假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!
快速排序时间复杂度
快速排序的时间复杂度在最坏情况下是O(N2),平均的时间复杂度是O(N*lgN)。
这句话很好理解: 假设被排序的数列中有N个数。遍历一次的时间复杂度是O(N),需要遍历多少次呢? 至少lg(N+1)次,最多N次。
为什么最少是lg(N+1)次? 快速排序是采用的分治法进行遍历的,我们将它看作一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的定义,它的深度至少是lg(N+1)。因此,快速排序的遍历次数最少是lg(N+1)次。
- 以上就是本篇文章【【排序算法】快速排序(Quick Sort)】的全部内容了,欢迎阅览 ! 文章地址:http://ww.kub2b.com/news/19489.html 栏目首页 相关文章 动态 同类文章 热门文章 网站地图 返回首页 企库往资讯移动站 http://ww.kub2b.com/mobile/ , 查看更多